Pet Food Safety
on March 5, 2014

Measuring up mycotoxin risks in petfood

Technology innovators staying on top of industry needs

The companion animal diet presents a unique and well-documented set of risks to our beloved best friends. Mycotoxins are secondary metabolites synthesized by fungal molds as signature chemicals and "calling cards" deposited into cereals and other crop commodities. A relatively narrow range of fungi produces hundreds of mycotoxins, each with its own unique chemistry and corresponding impact on animal physiology and health.

Mycotoxins are highly stable and resistant to extreme physical conditions including ultra-high temperatures and rapid drying regimes used in commodity processing and the manufacture of petfood. The toxic effects of mycotoxins include: nephrotoxicity, hepatotoxicity, estrogenic imbalance, reproductive disorders, immunosuppression, genotoxicity and carcinogenicity.

Identifying mycotoxin-producing fungi  is the relatively easy part, because no more than half a dozen genera are responsible for mycotoxin production-including Aspergillus and Penicillium (blue/green molds), Fusarium and Claviceps (see Table 1). Pinning down the culprit chemicals we call mycotoxins is much less easy. Hundreds of mycotoxins exist, each with its own unique chemistry and signature syndrome for companion animals, livestock and humans.

Researchers continue to obtain data showing the occurrence and impact of mycotoxins that appear in most cereal grain commodities which are common ingredients in dry petfoods. Aflatoxins have received more attention than any other group of mycotoxins, due to their acute toxicity with high mortality, alongside liver damage and carcinogenicity. Aflatoxin is known to cause loss of appetite, listlessness and vomiting in both dogs and cats.

Mycotoxins are intrinsically stealthy  in both presence and action. Synergistic effects occur when different mycotoxins…

To view the full article, please register or login.